Modernization of the technology for assessing the professionalism and the level of competence of teachers based on the analysis of students’ learning results
DOI: 10.23951/2307-6127-2023-1-18-32
An analysis of approaches, technologies, models developed over the past three years related to the assessment of professionalism and the level of competencies of teachers is presented. The attention is focused on research and development, which is based on working with big data, the use of technical means to automate the assessment process. An approach to assessing the professional competencies of teachers based on the analysis of the results of their students is formulated. Within the framework of this paper, the 3rd stage of the technology for assessing professionalism and competence level of general education teachers has been improved, tested and described. Using the data of the learning results of Tomsk region secondary students in the national Unified State Exam (USE), 3 (three) clustering algorithms were applied by technology: k-means, spectral clustering, agglomerative clustering. The learning results under study were on 4 (four) subjects: Russian, Mathematics (profile level), Physics, and Social Studies for the period from 2015 to 2019. The above data were divided into 2 (two) arrays: Science and Humanities, and clustering algorithms mentioned were applied to them. The validity of the clusters was assessed by the method of Silhouette coefficient and Kalinsky-Harabasz index. Some measured parameters of the algorithms and the expediency of their use within the framework of the task were evaluated.
Keywords: teacher competencies, clustering, teacher’s professional deficits, data-mining
References:
1. Sagitov S. T., Dorofeyev A. V., Mustayev A. F., Kalimullina G. I. Strukturno-funktsional’naya model yedinogo obrazovatelnogo prostranstva razvitiya professional’nykh kompetentsiy pedagoga [Structural-functional model of a unified educational space for the development of professional competencies of a teacher]. Pedagogika i prosveshcheniye, 2022, no. 1, pp. 103–115 (in Russian).
2. Altynikova N. V., Dorofeyev A. V., Muzayev A. A., Sagitov S. T. Upravleniye kachestvom pedagogicheskogo obrazovaniya na osnove diagnostiki professional’nykh defitsitov uchitelya [Management of the quality of teacher education based on the diagnosis of teacher’s professional deficits]. Psikhologicheskaya nauka i obrazovaniye, 2022, vol. 27, no. 1 (in Russian).
3. Leskina I. N. Model organizatsii upravleniya effektivnostyu professionalnoy deyatelnosti pedagoga na osnove raboty s bolshimi dannymi [Model for organizing the management of the effectiveness of a teacher’s professional activity based on working with big data]. Chelovek i obrazovaniye, 2021, no. 4 (69) (in Russian).
4. Pesha A. V., Shavrovskaya M. N., Nikolayeva M. A. Assessment-tsentr kompetentsiy onlayn: vozmozhnosti i metodologiya [Online Assessment Competence Center: Opportunities and Methodology]. Vestnik OmGU. Seriya: Ekonomika, 2021, no. 2 (in Russian).
5. Mukhamedyarova N. A., Bogachev A. N. Formirovaniye i otsenka urovnya sformirovannosti metapredmetnykh kompetentsiy pedagoga [Formation and assessment of the level of formation of teacher’s meta-subject competencies]. Vestnik YUUrGGPU, 2021, no. 3 (163) (in Russian).
6. Sharafutdinova D. R. Avtomatizatsiya protsessa otsenki professionalnykh kompetentsiy pedagoga po professionalnomu standartu [Automation of the process of assessing the professional competencies of a teacher according to the professional standard]. Vestnik UGNTU. Nauka, obrazovaniye, ekonomika. Seriya: Ekonomika, 2020, no. 1 (31), pp. 124–130 (in Russian).
7. Arstangaleyeva G. F., Tezina M. N., Slobodchikova S. M. Otsenka sformirovannosti tsifrovykh kompetentsiy pedagogicheskikh rabotnikov [Assessment of the formation of digital competencies of pedagogical workers]. Otechestvennaya i zarubezhnaya pedagogika, 2022, vol. 1, no. 3(84), pp. 140–155 (in Russian).
8. Garkavaya D. I., Zhilyakova M. N. Avtomatizirovannoye testirovaniye kompetentsiy pedagogov v ramkakh vnutrenney sistemy otsenki kachestva obrazovaniya dopolnitel’nogo professional’nogo obrazovaniya [Automated testing of teachers’ competencies within the framework of the internal system for assessing the quality of education of additional professional education]. Vestnik Belgorodskogo instituta razvitiya obrazovaniya, 2020, vol. 7, no. 3 (17), pp. 131–145 (in Russian).
9. Zair-Bek S. I., Anchikov K. M. Shkolnyye uchitelya v izmenyayushchikhsya usloviyakh: adaptivnost i gotovnost k innovatsiyam: informatsionnyy byulleten [School teachers in changing conditions: adaptability and readiness for innovation: information bulletin]. Moscow, NIU VSHE Publ., 2022. P. 44.
10. Temnyatkina O. V., Tokmeninova D. V. Modeli otsenki effektivnosti raboty pedagogov, ispol’zuyemyye v zarubezhnykh stranakh [Models for evaluating the effectiveness of the work of teachers used in foreign countries]. Perspektivy nauki i obrazovaniya, 2019, no. 3 (39), pp. 489–499 (in Russian).
11. Federal’nyy institut otsenki kachestva obrazovaniya: ofitsial’nyy sayt. Rezilentnost’. Otsenka po modeli PISA-2020, Moskva [Federal Institute for Education Quality Assessment: official website. Resilience. Assessment according to the PISA-2020 model. - Moscow] (in Russian). URL: https://fioco.ru/Media/Default/Documents/Резильентность%202020.pdf (accessed 30 August 2022).
12. Mozgova D. A., Zamyatina O. M., Semenova N. A., Kurovskaya L. A. Diagnostika professional’nykh defitsitov i kompetentsii pedagogov obshchego obrazovaniya: klasternyy analiz [The problem of assessing the professionalism and level of competence of a teacher of general and vocational education]. Vestnik Tomskogo gosudarstvennogo universiteta – Tomsk State University Journal, 2021, no. 472, pp. 189–196 (in Russian).
13. Shamrik D. L. Bazovyye metody vosstanovleniya propuskov v massivakh dannykh [Basic methods for restoring gaps in data arrays]. Informatsionnyye tekhnologii v nauke i proizvodstve: materialy V Vserossiyskoy molodezhnoy nauchno-tekhnicheskoy konferentsii [Information technologies in science and production: materials of the V All-Russian Youth Scientific and Technical Conference], 2018, pp. 73–83 (in Russian).
14. Kim Dzh.-O., Myuller Cн. U., Klekka U. R. Faktornyy, diskriminantnyy i klasternyy analiz [Factor, discriminant and cluster analysis]. Moscow, Finansy i statistika Publ., 1989. 215 p. (in Russian).
15. Pestunov I. A., Rylov C. A., Berikov B. B. Ierarkhicheskiye algoritmy klasterizatsii dlya segmentatsii mul’tispektral’nykh izobrazheniy [Hierarchical Clustering Algorithms for Segmentation of Multispectral Images]. Avtometriya – Journal of Institute of Automation and Electrometry, Siberian Branch of Russian Academy of Sciences, 2015, no. 4, pp. 12–22 ( in Russian).
16. Kokoreva Ya.V., Makarov A. A. Poetapnyy protsess klasternogo analiza dannykh na osnove algoritma klasterizatsii k-means [Step-by-step process of cluster data analysis based on k-means clustering algorithm]. Molodoy uchenyy, 2015, no. 13 (93), pp. 126–128 (in Russian). URL: https://moluch.ru/archive/93/20759/ (accessed 6 September 2021).
17. Gerasimenko Ye. M. Intellektual’nyy analiz dannykh. Algoritmy Data Mining: uchebnoye posobiye [Data mining. Data Mining Algorithms: Study Guide]. Rostov-na-Dony, Taganrog, Yuzhnyy federal’nyy universitet Publ., 2017, p. 84 (in Russian).
18. Ulrike von Luxburg A Tutorial on Spectral Clustering. Statistics and Computing, 2007, no. 17 (4).
19. Shitikov V. K., Mastitskiy S.Ye. Klassifikatsiya, regressiya, algoritmy Data Mining s ispol’zovaniyem R [Classification, Regression and Other Data Mining Algorithms Using R], 2017 (in Russian). URL: https://github.com/ranalytics/data-mining (accessed 30 August 2022).
20. Calinski R. B., Harabasz J. A dendrite method for cluster analysis. Communications in Statistics, 1974, no. 3, pp. 1–27.
21. Etienne Becht, Charles-Antoine Dutertre, Immanuel W.H. Kwok, Lai Guan Ng, Florent Ginhoux, Evan W. Newell. Evaluation of UMAP as an alternative to t-SNE for single-cell data, 2018.
Issue: 1, 2023
Series of issue: Issue 1
Rubric: PROFESSIONAL DEVELOPMENT OF TEACHERS
Pages: 18 — 32
Downloads: 494